Vibrational Analysis and Mean Bond Displacements in $M(XY)_6$ Complexes

Cynthia J. Jameson

Contribution from the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60680. Received July 3, 1986

Abstract: An empirical quadratic GVFF potential for $M(XY)_6$ molecules, coupled with explicit anharmonicities in the form of a Morse potential and a Urey-Bradley interaction between each nearest-neighbor nonbonded pair of X atoms, is used to model the stretching anharmonicities of the MX and XY bonds. Mean V-C, C-O, Co-C, and C-N bond displacements and mean square amplitudes are calculated for $V(CO)_6^-$ and $Co(CN)_6^{3-}$.

NMR chemical shifts of transition metal nuclei are very sensitive to the metal-ligand distance. Measures of the sensitivity of transition metal shielding to the metal-ligand distance are the observed large chemical shifts with temperature and upon isotopic substitution. For example, ⁵⁹Co shifts of 1.4 to 3 ppm/deg and ⁵¹V shifts of 0.3 to 1.5 ppm/deg have been reported.¹ Isotope shifts are also large: -4.7, -6, and -10 ppm on D substitution in {CpM(CO)₃H} for M = 51 V, 93 Nb, and 183 W, respectively.² Furthermore, the temperature coefficients of the shifts of ${}^{51}V$ in various vanadium carbonyl complexes show an interesting correlation with the chemical shifts at 300 K. A theory to interpret these very large shifts requires the knowledge of the mean bond length changes in these molecules in the form of various rovibrational averages, $\langle \Delta r \rangle$ and $\langle (\Delta r)^2 \rangle$. V(CO)₆⁻ is a reasonable prototype of these octahedral complexes. In this paper we use the vibrational frequencies of $V(CO)_6^-$ to determine an empirical quadratic force field which is consistent with the ones which have been established for the analogous $M(CO)_6$ neutral molecules (M = Cr, Mo, W). We augment this with cubic force constants calculated using an anharmonic model for stretching and nonbonded interactions, a model which has been successful in reproducing the 10 stretching-mode anharmonicities that are presently known for SF₆. We calculate the thermal averages $\langle \Delta r \rangle$ and $\langle (\Delta r)^2 \rangle$ for V–C and C–O bonds in V(CO)₆⁻ (^{13/12}C, ^{18/16}O) and also for Co–C and C–N bonds in Co(CN)₆⁻ (^{13/12}C, ^{15/14}N) for comparison.

The complete quadratic force field for the metal carbonyls $Cr(CO)_6$, $Mo(CO)_6$, and $W(CO)_6$ has been established by a comprehensive study of the vibrational spectra of the molecules $M(^{12}C^{16}O)_6$, $M(^{13}C^{16}O)_6$, and $M(^{12}C^{18}O)_6$ (M = Cr, Mo, W).³ These studies lead to the important result that the interaction force constants are reasonably transferable from one $M(CO)_6$ molecule to another. The force field for $V(CO)_6^-$ has not been reported. Only the frequencies for the $^{12}C^{16}O$ species are known from the work of Abel et al.⁴ However, it has been shown that in the $M(CO)_6$ series (M = Cr, Mo, W) most of the interaction force constants have equal or nearly equal magnitudes irrespective of M.³ Therefore, we will determine the force field for $V(CO)_6^-$ with the assumption that these interaction force constants which are invariant in the Cr, Mo, and W hexacarbonyls can be used for $V(CO)_6^-$ to establish the off-diagonal symmetry force constants. That is, we will use the same values for $f_{MC,CO}$, $f_{MC,CO}$, f

⁽⁴⁾ Abel, E. W.; McLean, R. A. N.; Tyfield, S. P.; Braterman, P. S.; Walker, A. P.; Hendra, P. J. J. Mol. Spectrosc. **1969**, *30*, 29-50.

. 1909, 30, 29-30.	determine the following force consta

Table I.	Valence	Force	Constants	for	V(CO)),

valence stretching		valence angle
force constants,		bending force constants,
mdyn Å ⁻¹		mdyn Å rad ⁻¹
fco fmc f ^{cis} f ^{cis} f ^{co} ,co' f ^k co,co' f ^k mc,mc' f ^k mc,co' f ^k mc,co' f ^k mc,co'	15.030 2.160 0.285 0.180 -0.025 0.360 0.683 -0.052 -0.097	$f_{\beta} = 0.4595 f_{\beta\beta'} = 0.1005 f_{\beta\beta''} = 0.0005 f_{\beta\beta'''} = -0.005 (f_{\alpha} - f_{\alpha\alpha''}) = 0.50 (\bar{f}_{\alpha\alpha'} - f_{\alpha\alpha''}) = 0.075 (f_{\alpha\alpha''} - f_{\alpha\alpha}^{\psi}) = 0.01$

Table II. Symmetry Force Constants and Frequencies for V(CO)₆⁻

	sym	mmetrv		frequencies, cm ⁻¹				
	fc	force		V(¹² C	C ¹⁶ O) ₆ ⁻	$V(^{13}C^{16}O)_{c}^{-1}$	$V(^{12}C^{18}O)c^{-1}$	
	cons	tants ^a		obsd ^b	calcd	calcd	calcd	
A _{1g}	\mathcal{F}_{11}	16.35	ω_1	2036	2034.5	1987.0	1989.1	
-0	\mathcal{F}_{22}	2.42		374	378.1	371.9	364.6	
	$\mathcal{F}_{12}^{}$	0.38						
E,	\mathcal{F}_{11}	14.64	ω_1	1908	1907.7	1863.3	1864.8	
•	\mathcal{F}_{44}	2.57	, e	393	391.4	385.0	377.5	
	F 14	0.69						
F ₁ ,	Fis	0.358		356	356.1	345.4	351.6	
F_{1n}	F	14.85	ω	1895	1897.9	1855.1	1853.2	
	\mathcal{F}_{77}	1.80	Ū	650	655.1	643.1	651.9	
	F	0.55		460	454.4	445.5	445.9	
	F	0.65		92	91.8	91.3	87.9	
	F	0.78						
	Fa	0						
	F	0						
	F 78	-0.18						
	F 79	-0.3						
	F	-0.21						
F2.	F 10 10	0.36		517	518.2	499.6	515.7	
-5	F	0.52		84	85.0	84.7	80.5	
	Finit	-0.52						
F2.,	F 12.12	0.57		506	505.7	489.2	501.0	
- 24	F 12.12	0.35			67.0	66.6	63.8	
	F 13,13	-0.11						

^aUnits are mydn Å⁻¹ except mdyn rad⁻¹ for \mathcal{F}_{68} , \mathcal{F}_{69} , \mathcal{F}_{78} , and \mathcal{F}_{79} , and mdyn Å rad⁻² for \mathcal{F}_{55} , \mathcal{F}_{88} , \mathcal{F}_{99} , \mathcal{F}_{89} , $\mathcal{F}_{10,10}$, $\mathcal{F}_{10,11}$, $\mathcal{F}_{11,11}$, $\mathcal{F}_{12,12}$, $\mathcal{F}_{12,13}$, and $\mathcal{F}_{13,13}$. The definitions of the symmetry coordinates are the same as in ref 3. ^b From ref 4. Only the frequencies for vibrations 1, 3, and 6 have been corrected for anharmonicity; that is, harmonic frequencies rather than observed frequencies are given for these vibrations only.

nated in the same way as in ref 3. The CMC angles are labeled α and the MCO angle is labeled β . The quadratic force constants (shown in Table I) are the second derivatives of the potential energy with respect to $\Delta r_{\rm MC}$, $\Delta R_{\rm CO}$, $\Delta \alpha_{\rm CMC}$, and $\Delta \beta_{\rm MCO}$.

energy with respect to Δr_{MC} , ΔR_{CO} , $\Delta \alpha_{CMC}$, and $\Delta \beta_{MCO}$. The fundamental frequencies for V(CO)₆⁻ are then used to determine the following force constants: f_{CO} , $f_{CO,CO'}^{c}$, and $f_{CO,CO'}^{c}$,

⁽¹⁾ Benedek, G. B.; Englman, R.; Armstrong, J. A. J. Chem. Phys. 1963, 39, 3349-3363. Jameson, C. J.; Rehder, D.; Hoch, M. J. Am. Chem. Soc., following paper in this issue.

 ⁽²⁾ Hoch, M.; Rehder, D. Inorg. Chim. Acta 1986, 111, L13. Näumann,
 F.; Rehder, D.; Pank, V. J. Organomet. Chem. 1982, 240, 363. McFarlane,
 H. C. E.; McFarlane, W.; Rycroft, D. S. J. Chem. Soc., Dalton Trans. 1976, 1616.

⁽³⁾ Jones, L. H.; McDowell, R. S.; Goldblatt, M. Inorg. Chem. 1969, 8, 2349-2363.

Table III. Evaluation of Approximate Cubic Force Constants for M(CO)₆-Type Molecules^a

F_{ijk}	term		V(CO) ₆	$Co(CN)_6^{3-}$	
fm	Δr_1^3	$(1/r_{MC})(F_3 + 3F - 3F') - 3a_{MC}K_{MC}$	-11.313	-11.343	
$\int_{rrr'}^{cis}$	$\Delta r_1^2 \Delta r_2$	$(1/4r_{\rm MC})(F_3 - F + F')^b$	-0.093	-0.203	
$f_{\alpha\alpha\alpha}$	$(r\Delta \alpha)^3$	$(1/4r_{\rm MC})(F_3 - 3F - F')$	-0.109	-0.236	
$f_{rr\alpha}$	$\Delta r_1^2 (r_1 \Delta \alpha_{1i})$	$(1/4r_{\rm MC})(F_3 + 3F - 3F')$	-0.056	-0.122	
$f_{rr'\alpha}$	$\Delta r_1 \Delta r_2 (r \Delta \alpha_{12})$	$(1/4r_{\rm MC})(F_3 + F + 3F')$	-0.078	-0.170	
$f_{r\alpha\alpha}$	$\Delta r_1 (r_1 \Delta \alpha_{1i})^2$	$(1/4r_{\rm MC})(F_3 + F - F')$	-0.075	-0.162	
f _{rrr}	ΔR_1^3	$-3a_{\rm CO}K_{\rm CO}$ or $-3a_{\rm CN}K_{\rm CN}$	-108.9	-125.8	

 ${}^{a}F_{ijk} \equiv (\partial^{3}V/\partial\mathcal{R}_{i}\partial\mathcal{R}_{j}\partial\mathcal{R}_{k})_{e}$ all in mydn Å⁻², $F' \equiv (\partial V/\partial q)_{0}/q_{0}$, $F \equiv (\partial^{2}V/\partial q^{2})_{0}$, $F_{3} \equiv q_{0}(\partial^{3}V/\partial q^{3})_{0}$. ^bNote the typographical error in this term in eq 1 of ref 7.

from ω_1 , ω_3 , and ω_6 ; f_{MC} , $f_{MC,MC'}^{\circ}$, and $f_{MC,MC}^{\circ}$, from ω_2 , ω_4 , and ω_7 ; f_β , $f_{\beta\beta'}$, $f_{\beta\beta''}$, and $f_{\beta\beta'''}$, from ω_5 , ω_8 , ω_{10} , and ω_{12} ; and finally the linear combinations $(f_{\alpha} - f_{\alpha\alpha''})$, $(f_{\alpha\alpha'} - f_{\alpha\alpha'''})$, and $(f_{\alpha\alpha''} - f_{\alpha\alpha}^{\prime\prime})$ from ω_9 , ω_{11} , and ω_{13} . Since ω_{13} was not observed, we used the same symmetry force constant $\mathcal{F}_{13,13}$ as in Cr(CO)₆. This fixes the sum $(f_{\alpha} - f_{\alpha\alpha''}) - 2(f_{\alpha\alpha'} - f_{\alpha\alpha'''})$. The complete set of force constants is given in Tables I and II. These are consistent with the set for Cr-, Mo-, and W(CO)₆ in that the values for V(CO)₆⁻ are not drastically different and the relative magnitudes of cis vs. trans force constants and other such trends are preserved. The elements of the G_S matrix have been given by Jones et al.⁵ Solution of the GF matrix problem reproduces the fundamental frequencies of V(CO)₆⁻ to within $\pm 2 \text{ cm}^{-1}$. Frequencies for the ¹³C and ¹⁸O isotopomers calculated with this set of force constants are also given in Table II.

In order to calculate mean V-C and C-O bond displacements, we need some reasonable estimate of the anharmonicity of the bonds. Here we extend the method of Krohn and Overend for SF₆,⁶ which we have successfully applied to other molecules of this type $(SeF_6, TeF_6, PtCl_6^{2-}, and PtBr_6^{2-})$.⁷ We assume, as they did, that the anharmonicity can be described by a stretching Morse anharmonicity combined with nonbonded interactions. In this way we can derive the expressions for the cubic force constants as shown in Table III. The Morse parameters $a_{VC} = 1.711 \text{ Å}^{-1}$ and $a_{\rm CO} = 2.416$ Å⁻¹ are calculated by the method of Herschbach and Laurie⁸ using the bond lengths $r_e(CO) = 1.146$ Å and $r_e(VC)$ = 1.931 Å in V(CO)₆⁻ from the X-ray crystal structure.⁹ K_{VC} = 2.16 mdyn/Å and K_{CO} = 15.03 mdyn/Å were estimated from the f_{MC} and f_{CO} values found in this vibrational analysis (see Table I). We neglect all contributions of nonbonded interactions to the cubic force constants involving the C-O stretch, so the entire anharmonicity of the CO bond is due to Morse anharmonicity. Terms other than those types shown in Table III are neglected. The nonbonded interaction constant $F(C \dots C)$ in Table III is obtained from the symmetry force constant $\mathcal{F}_{22} = K_{MC} + 4F$. For $V(CO)_6$ F = 0.065 mdyn/Å and F' and F₃ are taken to be -0.0065 and -0.65 mdyn/Å according to the usual recipe in which $F' \approx -0.1F, F_3 \approx -10F.$

The vibrational contributions to the mean bond displacements are calculated using the method of Bartell¹⁰ as implemented in our previous work,¹¹ from which the following is easily derived:

$$(\partial V/\partial z_k) = \sum_{j=1}^{12} F_{kj}(\mathcal{R}_j) + \sum_{i=1}^{12} \sum_{j=13}^{36} -\frac{F_{ij}}{2r} (\mathcal{R}_i \mathcal{R}_j) \epsilon_{kj} + \sum_{i=13}^{36} \sum_{j=13}^{36} -\frac{F_{ij}}{4r} (\mathcal{R}_i \mathcal{R}_j) (\epsilon_{ki} + \epsilon_{kj}) + \sum_{i=1}^{36} \sum_{j=1}^{36} \frac{F_{kij}}{2} (\mathcal{R}_i \mathcal{R}_j) k = 1 \text{ to } 12 (1)$$

Here \mathcal{R}_i stands for the curvilinear internal coordinates ΔR_{CO} or Δr_{MC} for i = 1 to 6 and i = 7 to 12, respectively, $\Delta \alpha$ for i = 13

Table IV. Mean Bond Displacements and Mean Square Amplitudes for the V-C Bond and the C-O Bond in $V(CO)_6^{-a}$

	Т	$\left(\Delta r\right)_{\rm vib}$	$\left(\Delta r\right)_{\rm rot}$	$\langle \Delta r \rangle$	$(\langle \Delta r)^2 \rangle$
V(¹² C ¹⁶ O) ₆ ⁻	300	11.6443	0.4432	12.0875	3.2451
V(¹³ C ¹⁶ O) ₆ ⁻	300	11.5170	0.4432	11.9602	3.2016
V(¹² C ¹⁸ O) ₆ ⁻	300	11.6379	0.4432	12.0810	3.2380
V(¹² C ¹⁶ O) ₆ ⁻	200	9.5167	0.2954	9.8122	2.7734
	240	10.3115	0.3545	10.6661	2.9453
	280	11.1844	0.4136	11.5980	3.1406
	320	12.1172	0.4727	12.5900	3.3535
	360	13.0960	0.5318	13.6278	3.5798
	400	14.1104	0.5909	14.7013	3.8167
		$\left(\Delta R\right)_{\rm vib}$	$\left(\Delta R\right)_{\rm rot}$	(ΔR)	$((\Delta R)^2)$
$V(^{12}C^{16}O)_{6}^{-}$	300	4.2967	0.1105	4.4073	1.2828
$V(^{13}C^{16}O)_{6}^{-}$	300	4.2026	0.1105	4.3131	1.2549
$V({}^{12}C{}^{18}O)_{6}^{-}$	300	4.1904	0.1105	4.3009	1.2513
$V(^{12}C^{16}O)_{6}^{-}$	200	4.2958	0.0737	4.3694	1.2817
	400	4.3077	0.1474	4.4551	1.2862

^a Δr refers to the V-C bond and ΔR to the CO bond; all are in 10⁻³ Å.

to 24, and $\Delta\beta$ for i = 25 to 36. $r = r_e(CO)$ for k = 1 to 6 and $r = r_e(MC)$ for k = 7 to 12. $\epsilon_{kj} = 1$ if the bond to atom k is in the *j*th bond angle deformation; otherwise $\epsilon_{kj} = 0$. F_{ij} stands for $(\partial^2 V/\partial \mathcal{R}_i \partial \mathcal{R}_j)$ and F_{kij} for $(\partial^3 V/\partial \mathcal{R}_k \partial \mathcal{R}_i \partial \mathcal{R}_j)$, given in Tables I and III, respectively. As in previous work, in eq 7 we have neglected the averages $(\mathcal{R}_k \mathcal{R}_i \mathcal{R}_j)$ and also set the sums over $(\Delta\alpha)$ and $(\Delta\beta)$ to zero. Upon setting $(\partial V/\partial z_k) = 0$, i.e., applying Ehrenfest's theorem, we obtain the set of coupled equations:

$$\sum_{i=1}^{12} F_{ki}(\mathcal{R}_i) = \Sigma_k \qquad k = 1 \text{ to } 12$$
(2)

Thus,

$$\langle \boldsymbol{R} \rangle = \mathbf{F}^{-1} \boldsymbol{\Sigma} \tag{3}$$

The column vector $\langle \mathbf{R} \rangle$ contains the 12 desired mean displacements $\langle \mathcal{R}_i \rangle$ of the CO and the MC bonds. The vector Σ contains the elements

$$\Sigma_{k} = \sum_{i=1}^{12} \sum_{j=13}^{36} \frac{F_{ij}}{2r} (\mathcal{R}_{i}\mathcal{R}_{j})\epsilon_{kj} + \sum_{i=13}^{36} \sum_{j=13}^{36} \frac{F_{ij}}{4r} (\mathcal{R}_{i}\mathcal{R}_{j})(\epsilon_{kj} + \epsilon_{ki}) + \sum_{i=1}^{36} \sum_{j=1}^{36} \frac{-F_{kij}}{2} (\mathcal{R}_{i}\mathcal{R}_{j}) \qquad k = 1 \text{ to } 12 \text{ (4)}$$

All the mean square amplitudes $(\mathcal{R}_i \mathcal{R}_j)$ such as (Δr_1^2) or $(\Delta r_1 \Delta \alpha_{12})$, etc., including all cross-terms are evaluated as

$$\langle \mathcal{R}_i \mathcal{R}_j \rangle = \sum_{s} L_{is} \langle Q_s^2 \rangle L_{sj}$$
 (5)

where

$$\langle Q_s^2 \rangle = (h/8\pi^2 c\omega_s) \coth(hc\omega_s/2kT)$$
 (6)

The above equations therefore allow us to calculate $\langle \Delta r_{\rm MC} \rangle$ and $\langle \Delta R_{\rm CO} \rangle$ as a function of temperature and masses. We need the inverse \mathbf{F}^{-1} of the force constant matrix for *stretches only*, for

⁽⁵⁾ Jones, L. H. J. Mol. Spectrosc. 1962, 8, 105-120.

⁽⁶⁾ Krohn, B. J.; Overend, J. J. Phys. Chem. 1984, 88, 564-574.

⁽⁷⁾ Jameson, C. J.; Jameson, A. K. J. Chem. Phys. 1986, 85, 5484-5492.

⁽⁸⁾ Herschbach, D. R.; Laurie, V. W. J. Chem. Phys. 1961, 35, 458-463. (9) Wilson, R. D.; Bau, R. J. Am. Chem. Soc. 1974, 96, 7601-7602.

 ⁽⁹⁾ Wilson, R. D.; Bau, R. J. Am. Chem. Soc. 1974, 96, 7601-7602.
 (10) Bartell, L. S. J. Chem. Phys. 1963, 38, 1827-1833; 1979, 70, 4581-4584.

⁽¹¹⁾ Jameson, C. J.; Osten, H. J. J. Chem. Phys. 1984, 81, 4915-4921, 4288-4292, 4293-4299, 4300-4305.

Figure 1. Mean bond displacements in $V(CO)_6^-$ and $Co(CN)_6^{3-}$.

which the redundancy condition is not a problem. For k = 1 to 6 we obtain the same value of $\langle \Delta R_{CO} \rangle$, and for k = 7 to 12 we obtain the same value of $\langle \Delta r_{MC} \rangle$, as dictated by symmetry. The results of these calculations are given in Table IV. The rotational contributions to the mean bond displacements are calculated by the usual method.¹¹

We find the temperature dependence of $\langle \Delta R_{\rm CO} \rangle$ and $\langle \Delta r_{\rm VC} \rangle$ to be:

 $(\Delta R_{\rm CO})^{400\rm K} - (\Delta R_{\rm CO})^{200\rm K} = 1.20 \times 10^{-5} \text{ Å due to vibration}$ plus 7.36 × 10⁻⁵ Å due to rotation (86% rotation)

 $(\Delta r_{\rm VC})^{400} - (\Delta r_{\rm VC})^{200} = 4.59 \times 10^{-3} \text{ Å due to vibration plus}$ 2.95 × 10⁻⁴ Å due torotation (only 6 % rotation)

We have shown in Figure 1 the temperature dependence of the VC and CO bond displacements. The mass dependence of the V-C and C-O bond displacements at 300 K are given by:

 $(\Delta r)_{5_{1}V-1_{2}C} - (\Delta r)_{5_{1}V-1_{3}C} = 1.27 \times 10^{-4} \text{ Å for } {}^{16}\text{O} \text{ isotopomers}$

$$\langle \Delta r \rangle_{{}^{51}V^{-12}C({}^{16}O)} - \langle \Delta r \rangle_{{}^{51}V^{-12}C({}^{18}O)} = 6 \times 10^{-6} \text{ Å}$$

$$\langle \Delta R \rangle_{{}^{12}C^{-16}O} - \langle \Delta R \rangle_{{}^{12}C^{-16}O} = 9.4 \times 10^{-5} \text{ Å}$$

$$\langle \Delta R \rangle_{{}^{12}C^{-16}O} - \langle \Delta R \rangle_{{}^{12}C^{-18}O} = 1.06 \times 10^{-4} \text{ Å}$$

We have applied the same theoretical calculation to the Co- $(CN)_6^{3-}$ ion using the quadratic force field of Jones et al.¹² and using the molecular geometry from X-ray data: r(Co-C) = 1.89 Å and r(C-N) = 1.5 Å.¹³ Morse parameters used are $a_{CoC} =$

Table V. Mean Bond Displacements and Mean Square Amplitudes for the Co-C Bond and the C-N Bond in $Co(CN)_6^{3-a}$

	_		•		
	T	$\left< \Delta r \right>_{\rm vib}$	$\left(\Delta r\right)_{\rm rot}$	$\langle \Delta r \rangle$	$\langle (\Delta r)^2 \rangle$
$Co(^{12}C^{14}N)_6^{3-}$	300	12.2011	0.4158	12.6169	3.1316
$Co(^{13}C^{14}N)_6^{3-}$	300	12.0791	0.4158	12.4949	3.0896
$Co({}^{12}C^{15}N)_6^{3-}$	300	12.1968	0.4158	12.6127	3.1264
$CO({}^{12}C{}^{14}N)_{6}{}^{3-}$	200	9.8399	0.2772	10.1171	2.6831
	240	10.7228	0.3327	11.0554	2.8447
	280	11.6915	0.3881	12.0796	3.0311
	320	12.7246	0.4436	13.1681	3.2361
	360	13.8061	0.4990	14.3051	3.4551
	400	14.9247	0.5545	15.4791	3.6849
		$(\Delta R)_{\rm vib}$	$\langle \Delta R \rangle_{\rm rot}$	$\langle \Delta R \rangle$	$\langle (\Delta R)^2 \rangle$
$Co({}^{12}C^{14}N)_6{}^{3-}$	300	4.2865	0.1021	4.3886	1.2129
$Co(^{13}C^{14}N)_6^{3-}$	300	4.1986	0.1021	4.3006	1.1882
$Co({}^{12}C^{15}N)_6{}^{3-}$	300	4.2168	0.1021	4.3189	1.1936
$Co({}^{12}C^{14}N)_6{}^{3-}$	200	4.2949	0.0681	4.3630	1.2117
	400	4.2827	0.1361	4.4419	1.2152

 $^{a}\Delta r$ refers to the Co–C bond and ΔR to the C–N bond; all are in 10⁻³ Å.

1.736 and $a_{\rm CN} = 2.406$ Å⁻¹, respectively. $K_{\rm CoC}$ and $K_{\rm CN}$ are assigned the values 2.084 and 17.425 mdyn Å⁻¹, estimated from $f_{\rm CoC}$ and $f_{\rm CN}$ given by Jones.¹² The nonbonded interaction constant $F({\rm C}{\cdots}{\rm C}) = 0.138$ mdyn/Å is obtained from $\mathcal{F}_{22} = K_{\rm MC} + 4F$ using the experimental value of the symmetry force constant \mathcal{F}_{22} . The results are presented in Table V. We find the temperature dependence of $\langle \Delta R_{\rm CN} \rangle$ to be very similar to that of $\langle \Delta R_{\rm CO} \rangle$:

 $(\Delta R_{CN})^{400\text{K}} - (\Delta R_{CN})^{200\text{K}} = -1.2 \times 10^{-5} \text{ Å due to vibration}$ plus 6.8 × 10⁻⁵ Å due to rotation (120% rotation)

 $(\Delta r_{\text{CoC}})^{400}$ - $(\Delta r_{\text{CoC}})^{200}$ = 5.08 × 10⁻³ Å due to vibration plus 2.77 × 10⁻⁴ Å due to rotation (5% rotation)

The mass dependence of the Co-C and C-N bonds at 300 K are given by:

$$(\Delta r)_{59}_{Co^{-12}C} - \langle \Delta r \rangle_{59}_{Co^{-12}C} = 1.22 \times 10^{-4} \text{ Å for } {}^{14}\text{N isotopomers}$$
$$(\Delta r)_{59}_{Co^{-12}C({}^{14}\text{N})} - \langle \Delta r \rangle_{59}_{Co^{12}C({}^{15}\text{N})} = 4.2 \times 10^{-6} \text{ Å}$$
$$\langle \Delta R \rangle_{{}^{12}C^{-14}\text{N}} - \langle \Delta R \rangle_{{}^{13}C^{-14}\text{N}} = 8.8 \times 10^{-5} \text{ Å}$$

 $(\Delta R)_{^{12}C^{-14}N} - (\Delta R)_{^{12}C^{-15}N} = 6.9 \times 10^{-5} \text{ Å}$

It is worthwhile noting in Figure 1 that the temperature dependence of the M-C bond displacements is nearly two orders of magnitude larger than that of the CO or CN bond displacements, although the ¹³C-induced changes are only 1.4 times as large for the M-C bonds as for the CO or CN bonds. Since the electron distribution in transition metal complexes is known to be sensitive to the metal-ligand distance, these results indicate that the optical absorption bands of these complexes should exhibit a measurable temperature dependence. The change in the position of the ¹A_{1g} \rightarrow ¹T_{1g} absorption maximum in the Co(CN)₆³⁻ complex has been noted in aqueous solution, a change of about 4 nm in the range 0-90 °C.¹⁴

The observed temperature and mass dependence of ⁵¹V and ⁵⁹Co NMR chemical shifts in V(CO)₆⁻ and Co(CN)₆³⁻ are interpreted in the following paper in terms of the calculated temperature and mass dependence of $\langle \Delta r_{VC} \rangle$, $\langle \Delta R_{CO} \rangle$, $\langle \Delta r_{CoC} \rangle$, and $\langle \Delta R_{CN} \rangle$.

Acknowledgment. This research has been supported in part by the National Science Foundation (CHE85-05725).

⁽¹²⁾ Jones, L. H.; Memering, M. N.; Swanson, B. I. J. Chem. Phys. 1971, 54, 4666-4671.

 ⁽¹³⁾ Curry, N. A.; Runciman, W. A. Acta Crystallogr. 1959, 12, 674.
 (14) Juranic, N. J. Chem. Phys. 1981, 74, 3690-3693.