Vibrational Analysis and Mean Bond Displacements in M(XY) ${ }_{6}$ Complexes

Cynthia J. Jameson
Contribution from the Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60680. Received July 3, 1986

Abstract

An empirical quadratic GVFF potential for $\mathrm{M}(\mathrm{XY})_{6}$ molecules, coupled with explicit anharmonicities in the form of a Morse potential and a Urey-Bradley interaction between each nearest-neighbor nonbonded pair of X atoms, is used to model the stretching anharmonicities of the MX and XY bonds. Mean V-C, C-O, Co-C, and C-N bond displacements and mean square amplitudes are calculated for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$and $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$.

NMR chemical shifts of transition metal nuclei are very sensitive to the metal-ligand distance. Measures of the sensitivity of transition metal shielding to the metal-ligand distance are the observed large chemical shifts with temperature and upon isotopic substitution. For example, ${ }^{59} \mathrm{Co}$ shifts of 1.4 to $3 \mathrm{ppm} / \mathrm{deg}$ and ${ }^{51} \mathrm{~V}$ shifts of 0.3 to $1.5 \mathrm{ppm} / \mathrm{deg}$ have been reported. ${ }^{1}$ Isotope shifts are also large: $-4.7,-6$, and -10 ppm on D substitution in $\left\{\mathrm{CpM}(\mathrm{CO})_{3} \mathrm{H}\right\}$ for $\mathrm{M}={ }^{51} \mathrm{~V},{ }^{93} \mathrm{Nb}$, and ${ }^{183} \mathrm{~W}$, respectively. ${ }^{2}$ Furthermore, the temperature coefficients of the shifts of ${ }^{51} \mathrm{~V}$ in various vanadium carbonyl complexes show an interesting correlation with the chemical shifts at 300 K . A theory to interpret these very large shifts requires the knowledge of the mean bond length changes in these molecules in the form of various rovibrational averages, $\langle\Delta r\rangle$ and $\left((\Delta r)^{2}\right\rangle . \mathrm{V}(\mathrm{CO})_{6}{ }^{-}$is a reasonable prototype of these octahedral complexes. In this paper we use the vibrational frequencies of $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$to determine an empirical quadratic force field which is consistent with the ones which have been established for the analogous $\mathrm{M}(\mathrm{CO})_{6}$ neutral molecules (M $=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}$). We augment this with cubic force constants calculated using an anharmonic model for stretching and nonbonded interactions, a model which has been successful in reproducing the 10 stretching-mode anharmonicities that are presently known for SF_{6}. We calculate the thermal averages $(\Delta r$) and $\left\langle(\Delta r)^{2}\right\rangle$ for $\mathrm{V}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds in $\mathrm{V}(\mathrm{CO})_{6}-\left({ }^{13 / 12} \mathrm{C},{ }^{18 / 16} \mathrm{O}\right)$ and also for $\mathrm{Co}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds in $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}\left({ }^{13 / 12} \mathrm{C},{ }^{15 / 14} \mathrm{~N}\right)$ for comparison.

The complete quadratic force field for the metal carbonyls $\mathrm{Cr}(\mathrm{CO})_{6}, \mathrm{Mo}(\mathrm{CO})_{6}$, and $\mathrm{W}(\mathrm{CO})_{6}$ has been established by a comprehensive study of the vibrational spectra of the molecules $\mathrm{M}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}, \mathrm{M}\left({ }^{13} \mathrm{C}^{16} \mathrm{O}\right)_{6}$, and $\mathrm{M}\left({ }^{12} \mathrm{C}^{18} \mathrm{O}\right)_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}),{ }^{3}$ These studies lead to the important result that the interaction force constants are reasonably transferable from one $\mathrm{M}(\mathrm{CO})_{6}$ molecule to another. The force field for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$has not been reported. Only the frequencies for the ${ }^{12} \mathrm{C}^{16} \mathrm{O}$ species are known from the work of Abel et al. ${ }^{4}$ However, it has been shown that in the $\mathrm{M}(\mathrm{CO})_{6}$ series $(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W})$ most of the interaction force constants have equal or nearly equal magnitudes irrespective of $\mathrm{M} .{ }^{3}$ Therefore, we will determine the force field for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$with the assumption that these interaction force constants which are invariant in the Cr, Mo, and W hexacarbonyls can be used for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$to establish the off-diagonal symmetry force constants. That is, we will use the same values for $f_{\text {MC.co }}, f_{\text {MC, co }}$, $f_{\text {MC.co }}{ }^{\prime}$, $f_{\mathrm{CO}, \beta^{\prime}}, f_{\mathrm{CO}, \alpha^{\prime}}, f_{\mathrm{CO}, \alpha^{\prime \prime}}, f_{\mathrm{MC}, \beta^{\prime}}, f_{\mathrm{MC}, \alpha^{\prime}}, f_{\mathrm{MC}, \alpha^{\prime \prime}}, f_{\alpha \beta^{\prime}}, f_{\alpha \beta^{\prime \prime}}$, and $f_{\alpha \beta^{\prime \prime}}$, as were reported for $\mathrm{Cr}(\mathrm{CO})_{6}$. The displacement coordinates are desig-

[^0]Table I. Valence Force Constants for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$

valence stretching force constants, mdyn \AA^{-1}		valence angle bending force constants, $\mathrm{mdyn} \AA \mathrm{rad}^{-1}$
$f_{\text {co }}$	15.030	$f_{\beta}=0.4595$
$f_{M C}$	2.160	$f_{\beta \beta^{\prime}}=0.1005$
$f_{\text {coic }}^{\text {cis }}$ co ${ }^{\text {c }}$	0.285	$f_{\text {SB/" }}=0.0005$
$f^{\prime}{ }_{\text {co.co }}{ }^{\prime}$	0.180	$f_{\text {SB }}{ }^{\prime \prime \prime}=-0.005$
$f^{\mathrm{CmC}, \mathrm{MC}}$	-0.025	$\left(f_{\alpha}-f_{\alpha \alpha^{\prime \prime}}\right)=0.50$
$f^{\prime} \mathrm{MC}, \mathrm{MC}^{\prime}$	0.360	$\left(\bar{f}_{\alpha \alpha^{\prime}}-f_{\alpha \alpha^{\prime \prime \prime}}\right)=0.075$
$f_{\text {Mc, } \text { co }}$	0.683	$\left(f_{\alpha \alpha^{\prime \prime}}-f_{\alpha \alpha}^{\prime v}\right)=0.01$
$f_{\text {Mc.co }}$	-0.052	
$f_{\text {Mc, }{ }^{\text {co }} \text { ' }}$	-0.097	

Table II. Symmetry Force Constants and Frequencies for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$

	symmetry force constants ${ }^{\text {a }}$		frequencies, cm^{-1}				
				$\mathrm{V}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$		$\begin{aligned} & \mathrm{V}\left({ }^{13} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-} \\ & \quad \text { calcd } \end{aligned}$	$\begin{aligned} & \mathrm{V}\left({ }^{12} \mathrm{C}^{18} \mathrm{O}\right)_{6} \\ & \text { calcd } \end{aligned}$
				obsd b	calcd		
$\mathrm{A}_{1 \mathrm{~g}}$	7_{11}	16.35	ω_{1}	2036	2034.5	1987.0	1989.1
	7_{22}	2.42		374	378.1	371.9	364.6
	\mathfrak{F}_{12}	0.38					
E_{g}	$\mathfrak{7}^{33}$	14.64	ω_{3}	1908	1907.7	1863.3	1864.8
	\mathcal{F}_{44}	2.57		393	391.4	385.0	377.5
	\mathfrak{F}_{34}	0.69					
$\mathrm{F}_{1 g}$	\mathfrak{F}_{59}	0.358		356	356.1	345.4	351.6
F_{14}	7_{66}	14.85	ω_{6}	1895	1897.9	1855.1	1853.2
	\mathfrak{F}_{77}	1.80		650	655.1	643.1	651.9
	\mathfrak{F}_{88}	0.55		460	454.4	445.5	445.9
	7_{99}	0.65		92	91.8	91.3	87.9
	\mathcal{F}_{67}	0.78					
	\mathcal{F}_{68}	0					
	\mathfrak{F}_{69}	0					
	\mathfrak{F}_{78}	-0.18					
	\mathfrak{F}_{79}	-0.3					
	\mathfrak{F}_{89}	-0.21					
$\mathrm{F}_{2 \mathrm{~g}}$	$\mathcal{F}_{10,10}$	0.36		517	518.2	499.6	515.7
	$\mathcal{F}_{11,11}$	0.52		84	85.0	84.7	80.5
	$\mathcal{F}_{10,11}$	-0.52					
$\mathrm{F}_{2 u}$	$7_{12,12}$	0.57		506	505.7	489.2	501.0
	$7_{13,13}$	0.35			67.0	66.6	63.8
	$\mathcal{F}_{12,13}$	-0.11					

${ }^{a}$ Units are mydn \AA^{-1} except mdyn rad ${ }^{-1}$ for $\mathfrak{F}_{68}, \mathcal{F}_{69}, \mathcal{F}_{78}$, and \mathfrak{F}_{79}, and mdyn $\AA \mathrm{rad}^{-2}$ for $\mathcal{F}_{55}, \mathfrak{F}_{88}, \mathcal{F}_{99}, \mathfrak{F}_{89}, \mathfrak{F}_{10,10}, \mathfrak{F}_{10,11}, \mathfrak{F}_{11,11}, \mathfrak{F}_{12,12}$, $\mathscr{F}_{12,13}$, and $\mathscr{F}_{13,13}$. The definitions of the symmetry coordinates are the same as in ref 3 . ${ }^{b}$ From ref 4 . Only the frequencies for vibrations 1,3 , and 6 have been corrected for anharmonicity; that is, harmonic frequencies rather than observed frequencies are given for these vibrations only.
nated in the same way as in ref 3 . The CMC angles are labeled α and the MCO angle is labeled β. The quadratic force constants (shown in Table I) are the second derivatives of the potential energy with respect to $\Delta r_{\mathrm{MC}}, \Delta R_{\mathrm{CO}}, \Delta \alpha_{\mathrm{CMC}}$, and $\Delta \beta_{\mathrm{MCO}}$.

The fundamental frequencies for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$are then used to determine the following force constants: $f_{\mathrm{CO}}, f_{\mathrm{CO}, \mathrm{co}^{\prime}}$, and $f_{\mathrm{CO}, \mathrm{CO}^{\prime}}$,

Table III. Evaluation of Approximate Cubic Force Constants for $\mathrm{M}(\mathrm{CO})_{6}$-Type Molecules ${ }^{a}$

$F_{l j k}$	term		$\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$	$\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$
$f_{r r r}$	$\Delta r_{1}{ }^{3}$	$\left(1 / r_{\mathrm{MC}}\right)\left(F_{3}+3 F-3 F\right)-3 a_{\mathrm{MC}} K_{\mathrm{MC}}$	-11.313	-11.343
$f_{r r r^{\prime}}$	$\Delta r_{1}{ }^{2} \Delta r_{2}$	$\left(1 / 4 r_{\mathrm{MC}}\right)\left(F_{3}-F+F\right)^{b}$	-0.093	-0.203
$f_{\alpha \alpha \alpha}$	$(r \Delta \alpha)^{3}$	$\left(1 / 4 r_{\mathrm{MC}}\right)\left(F_{3}-3 F-F\right)$	-0.109	-0.236
$f_{r r \alpha}$	$\Delta r_{1}{ }^{2}\left(r_{1} \Delta \alpha_{1 j}\right)$	$\left(1 / 4 r_{\mathrm{MC}}\right)\left(F_{3}+3 F-3 F\right)$	-0.056	-0.122
$f_{r r^{\prime} \alpha}$	$\Delta r_{1} \Delta r_{2}\left(r \Delta \alpha_{12}\right)$	$\left(1 / 4 r_{\mathrm{MC}}\right)\left(F_{3}+F+3 F\right)$	-0.170	
$f_{r \alpha \alpha}$	$\Delta r_{1}\left(r_{1} \Delta \alpha_{1 j}\right)^{2}$	$\left(1 / 4 r_{\mathrm{MC}}\right)\left(F_{3}+F-F\right)$	-0.078	-0.075
$f_{R R R}$	$\Delta R_{1}{ }^{3}$	$-3 a_{\mathrm{CO}} K_{\mathrm{CO}}$ or $-3 a_{\mathrm{CN}} K_{\mathrm{CN}}$	-108.9	-125.8

${ }^{a} F_{i j k} \equiv\left(\partial^{3} V / \partial \mathcal{R}_{i} \partial \mathcal{R}_{j} \partial \mathcal{R}_{k}\right)_{\mathrm{e}}$ all in mydn $\AA^{-2}, F^{\prime} \equiv(\partial V / \partial q)_{0} / q_{0}, F \equiv\left(\partial^{2} V / \partial q^{2}\right)_{0}, F_{3} \equiv q_{0}\left(\partial^{3} V / \partial q^{3}\right)_{0} .{ }^{b}$ Note the typographical error in this term in eq 1 of ref 7 .
from ω_{1}, ω_{3}, and $\omega_{6} ; f_{\mathrm{MC}}, f_{\mathrm{MC}, \mathrm{MC}}$, and $f_{\mathrm{MC}, \mathrm{MC}}$, from ω_{2}, ω_{4}, and $\omega_{7} ; f_{\beta}, f_{\beta \beta^{\prime}}, f_{\beta \beta^{\prime \prime}}$, and $f_{\beta \beta^{\prime \prime \prime}}$, from $\omega_{5}, \omega_{8}, \omega_{10}$, and ω_{12}; and finally the linear combinations $\left(f_{\alpha}-f_{\alpha \alpha^{\prime \prime}}\right),\left(\bar{f}_{\alpha \alpha^{\prime}}-f_{\alpha \alpha^{\prime \prime \prime}}\right)$, and $\left(f_{\alpha \alpha^{\prime \prime}}-f_{\alpha \alpha}^{i v}\right)$ from ω_{9}, ω_{11}, and ω_{13}. Since ω_{13} was not observed, we used the same symmetry force constant $\mathcal{F}_{13.13}$ as in $\mathrm{Cr}(\mathrm{CO})_{6}$. This fixes the sum $\left(f_{\alpha}-f_{\alpha \alpha^{\prime \prime}}\right)-2\left(f_{\alpha \alpha^{\prime}}-f_{\alpha \alpha^{\prime \prime \prime}}\right)$. The complete set of force constants is given in Tables I and II. These are consistent with the set for $\mathrm{Cr}-$, Mo-, and $\mathrm{W}(\mathrm{CO})_{6}$ in that the values for $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$are not drastically different and the relative magnitudes of cis vs. trans force constants and other such trends are preserved. The elements of the \mathbf{G}_{S} matrix have been given by Jones et al. ${ }^{5}$ Solution of the GF matrix problem reproduces the fundamental frequencies of $\mathrm{V}(\mathrm{CO})_{6}$ to within $\pm 2 \mathrm{~cm}^{-1}$. Frequencies for the ${ }^{13} \mathrm{C}$ and ${ }^{18} \mathrm{O}$ isotopomers calculated with this set of force constants are also given in Table II.
In order to calculate mean $\mathrm{V}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond displacements, we need some reasonable estimate of the anharmonicity of the bonds. Here we extend the method of Krohn and Overend for $\mathrm{SF}_{6},{ }^{6}$ which we have successfully applied to other molecules of this type ($\mathrm{SeF}_{6}, \mathrm{TeF}_{6}, \mathrm{PtCl}_{6}{ }^{2-}$, and $\mathrm{PtBr}_{6}{ }^{2-}$). ${ }^{7}$ We assume, as they did, that the anharmonicity can be described by a stretching Morse anharmonicity combined with nonbonded interactions. In this way we can derive the expressions for the cubic force constants as shown in Table III. The Morse parameters $a_{\mathrm{vc}}=1.711 \AA^{-1}$ and $a_{\mathrm{CO}}=2.416 \AA^{-1}$ are calculated by the method of Herschbach and Laurie ${ }^{8}$ using the bond lengths $r_{\mathrm{e}}(\mathrm{CO})=1.146 \AA$ and $r_{\mathrm{e}}(\mathrm{VC})$ $=1.931 \AA$ in $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$from the X-ray crystal structure. ${ }^{9} K_{\mathrm{VC}}$ $=2.16 \mathrm{mdyn} / \AA$ and $K_{\mathrm{CO}}=15.03 \mathrm{mdyn} / \AA$ were estimated from the $f_{\text {MC }}$ and $f_{\text {Co }}$ values found in this vibrational analysis (see Table I). We neglect all contributions of nonbonded interactions to the cubic force constants involving the $\mathrm{C}-\mathrm{O}$ stretch, so the entire anharmonicity of the CO bond is due to Morse anharmonicity. Terms other than those types shown in Table III are neglected. The nonbonded interaction constant $F(\mathrm{C} \ldots \mathrm{C})$ in Table III is obtained from the symmetry force constant $\mathcal{F}_{22}=K_{\mathrm{MC}}+4 F$. For $\mathrm{V}(\mathrm{CO})_{6}{ }^{-} F=0.065 \mathrm{mdyn} / \AA$ and F^{\prime} and F_{3} are taken to be -0.0065 and $-0.65 \mathrm{mdyn} / \AA$ according to the usual recipe in which $F^{\prime} \approx-0.1 F, F_{3} \approx-10 F$.

The vibrational contributions to the mean bond displacements are calculated using the method of Bartell ${ }^{10}$ as implemented in our previous work, ${ }^{11}$ from which the following is easily derived:

$$
\begin{align*}
& \left\langle\partial V / \partial z_{k}\right\rangle=\sum_{j=1}^{12} F_{k j}\left(\mathcal{R}_{j}\right\rangle+\sum_{i=1}^{12} \sum_{j=13}^{36}-\frac{F_{i j}}{2 r}\left(\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle \epsilon_{k j}+ \\
& \sum_{i=13}^{36} \sum_{j=13}^{36}-\frac{F_{i j}}{4 r}\left(\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle\left(\epsilon_{k i}+\epsilon_{k j}\right)+\sum_{i=1}^{36} \sum_{j=1}^{36} \frac{F_{k i j}}{2}\left\langle\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle \\
& k=1 \text { to } 12 \tag{1}
\end{align*}
$$

Here \mathcal{R}_{i} stands for the curvilinear internal coordinates ΔR_{CO} or Δr_{MC} for $i=1$ to 6 and $i=7$ to 12 , respectively, $\Delta \alpha$ for $i=13$

[^1]Table IV. Mean Bond Displacements and Mean Square Amplitudes for the V-C Bond and the $\mathrm{C}-\mathrm{O}$ Bond in $\mathrm{V}(\mathrm{CO})_{6}{ }^{-a}$

	T	$(\Delta r)_{\mathrm{vib}}$	$(\Delta r)_{\text {rot }}$	$\langle\Delta r\rangle$	$\left((\Delta r)^{2}\right)$
$\mathrm{V}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$	300	11.6443	0.4432	12.0875	3.2451
$\mathrm{V}\left({ }^{13} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$	300	11.5170	0.4432	11.9602	3.2016
$\mathrm{V}\left({ }^{12} \mathrm{C}^{18} \mathrm{O}\right)_{6}{ }^{-}$	300	11.6379	0.4432	12.0810	3.2380
$\mathrm{V}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$	200	9.5167	0.2954	9.8122	2.7734
	240	10.3115	0.3545	10.6661	2.9453
	280	11.1844	0.4136	11.5980	3.1406
	320	12.1172	0.4727	12.5900	3.3535
	360	13.0960	0.5318	13.6278	3.5798
	400	14.1104	0.5909	14.7013	3.8167
		$(\Delta R)_{\mathrm{vib}}$	$(\Delta R)_{\text {rot }}$	$(\triangle R)$	$\left((\Delta R)^{2}\right)$
$\mathrm{V}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$	300	4.2967	0.1105	4.4073	1.2828
$\mathrm{V}\left({ }^{13} \mathrm{C}^{16} \mathrm{O}\right)_{6}{ }^{-}$	300	4.2026	0.1105	4.3131	1.2549
$\mathrm{V}\left({ }^{12} \mathrm{C}^{18} \mathrm{O}\right)_{6}{ }^{-}$	300	4.1904	0.1105	4.3009	1.2513
$\mathrm{V}\left({ }^{12} \mathrm{C}^{16} \mathrm{O}\right)_{6}^{-}$	200	4.2958	0.0737	4.3694	1.2817
	400	4.3077	0.1474	4.4551	1.2862

${ }^{a} \Delta r$ refers to the $\mathrm{V}-\mathrm{C}$ bond and ΔR to the CO bond; all are in 10^{-3} \AA.
to 24 , and $\Delta \beta$ for $i=25$ to $36 . r=r_{\mathrm{e}}(\mathrm{CO})$ for $k=1$ to 6 and $r=r_{\mathrm{e}}(\mathrm{MC})$ for $k=7$ to $12 . \epsilon_{\mathrm{kj}}=1$ if the bond to atom k is in the j th bond angle deformation; otherwise $\epsilon_{k j}=0 . F_{l y}$ stands for ($\partial^{2} V / \partial \mathcal{R}_{i} \partial \mathcal{R}_{j}$) and $F_{k i j}$ for ($\partial^{3} \mathrm{~V} / \partial \mathcal{R}_{k} \partial \mathcal{R}_{i} \partial \mathcal{R}_{j}$), given in Tables I and III, respectively. As in previous work, in eq 7 we have neglected the averages $\left(\mathcal{R}_{k} \mathcal{R}_{i} \mathcal{R}_{j}\right)$ and also set the sums over $\langle\Delta \alpha\rangle$ and $(\Delta \beta)$ to zero. Upon setting $\left(\partial V / \partial z_{k}\right)=0$, i.e., applying Ehrenfest's theorem, we obtain the set of coupled equations:

$$
\begin{equation*}
\sum_{i=1}^{12} F_{k i}\left(\mathcal{R}_{i}\right\rangle=\Sigma_{k} \quad k=1 \text { to } 12 \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
(\boldsymbol{R}\rangle=\mathbf{F}^{-1} \Sigma \tag{3}
\end{equation*}
$$

The column vector $\langle\boldsymbol{R}\rangle$ contains the 12 desired mean displacements $\left\langle\mathcal{R}_{i}\right\rangle$ of the CO and the MC bonds. The vector Σ contains the elements

$$
\begin{array}{r}
\Sigma_{k}=\sum_{i=1}^{12} \sum_{j=13}^{36} \frac{F_{i j}}{2 r}\left(\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle \epsilon_{k j}+\sum_{i=13}^{36} \sum_{j=13}^{36} \frac{F_{i j}}{4 r}\left\langle\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle\left(\epsilon_{k j}+\epsilon_{k i}\right)+ \\
\sum_{i=1}^{36} \sum_{j=1}^{36} \frac{-F_{k i j}}{2}\left\langle\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle \quad k=1 \text { to } 12 \tag{4}
\end{array}
$$

All the mean square amplitudes $\left\langle\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle$ such as $\left(\Delta r_{1}{ }^{2}\right\rangle$ or ($\Delta r_{1} \Delta \alpha_{12}$), etc., including all cross-terms are evaluated as

$$
\begin{equation*}
\left(\mathcal{R}_{i} \mathcal{R}_{j}\right\rangle=\sum_{s} L_{i s}\left\langle Q_{s}^{2}\right\rangle L_{s j} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle Q_{s}^{2}\right\rangle=\left(h / 8 \pi^{2} c \omega_{s}\right) \operatorname{coth}\left(h c \omega_{s} / 2 k T\right) \tag{6}
\end{equation*}
$$

The above equations therefore allow us to calculate (Δr_{MC}) and (ΔR_{CO}) as a function of temperature and masses. We need the inverse \mathbf{F}^{-1} of the force constant matrix for stretches only, for

Figure 1. Mean bond displacements in $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$and $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$,
which the redundancy condition is not a problem. For $k=1$ to 6 we obtain the same value of (ΔR_{Co}), and for $k=7$ to 12 we obtain the same value of ($\left.\Delta r_{\mathrm{MC}}\right\rangle$, as dictated by symmetry. The results of these calculations are given in Table IV. The rotational contributions to the mean bond displacements are calculated by the usual method. ${ }^{11}$

We find the temperature dependence of (ΔR_{CO}) and (Δr_{VC}) to be:
$\left(\Delta R_{\mathrm{CO}}\right)^{400 \mathrm{~K}}-\left(\Delta R_{\mathrm{CO}}\right)^{200 \mathrm{~K}}=1.20 \times 10^{-5} \AA$ due to vibration plus $7.36 \times 10^{-5} \AA$ due to rotation (86% rotation)
$\left(\Delta r_{\mathrm{VC}}\right)^{400}-\left(\Delta r_{\mathrm{VC}}\right)^{200}=4.59 \times 10^{-3} \AA$ due to vibration plus $2.95 \times 10^{-4} \AA$ due torotation (only 6% rotation)

We have shown in Figure 1 the temperature dependence of the VC and CO bond displacements. The mass dependence of the $\mathrm{V}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bond displacements at 300 K are given by:
$\langle\Delta r\rangle_{s: \mathrm{v}_{-}: 2 \mathrm{C}}-\langle\Delta r\rangle_{\mathrm{s}: \mathrm{V}_{-}:{ }^{3} \mathrm{C}}=1.27 \times 10^{-4} \AA$ for ${ }^{16} \mathrm{O}$ isotopomers

$$
\begin{aligned}
& (\Delta r)_{5_{\mathrm{V}_{-1}}{ }^{12} \mathrm{C}\left({ }^{16} \mathrm{O}\right)}-(\Delta r)_{5^{2}{ }_{\mathrm{V}-12} \mathrm{C}\left({ }^{18} \mathrm{O}\right)}=6 \times 10^{-6} \AA \\
& (\Delta R)_{: 2 \mathrm{C}-16 \mathrm{O}}-(\Delta R)_{\mathrm{Ba}_{\mathrm{C}}-16 \mathrm{O}}=9.4 \times 10^{-5} \AA \\
& \langle\Delta R\rangle_{2^{2}-160}-(\Delta R)_{1^{2} \mathrm{C}-18 \mathrm{O}}=1.06 \times 10^{-4} \AA
\end{aligned}
$$

We have applied the same theoretical calculation to the Co $(\mathrm{CN})_{6}{ }^{3-}$ ion using the quadratic force field of Jones et al. ${ }^{12}$ and using the molecular geometry from X-ray data: $r\left(\mathrm{Co}_{0}-\mathrm{C}\right)=1.89$ \AA and $r(\mathrm{C}-\mathrm{N})=1.5 \AA .{ }^{13}$ Morse parameters used are $a_{\mathrm{CoC}}=$

[^2]Table V. Mean Bond Displacements and Mean Square Amplitudes for the $\mathrm{Co}-\mathrm{C}$ Bond and the $\mathrm{C}-\mathrm{N}$ Bond in $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-a}$

	T	$\langle\Delta r\rangle_{\text {vib }}$	$(\Delta r\rangle_{\text {rot }}$	$\langle\Delta r\rangle$	$\left\langle(\Delta r)^{2}\right\rangle$
$\mathrm{Co}\left({ }^{12} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	300	12.2011	0.4158	12.6169	3.1316
$\mathrm{Co}\left({ }^{13} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	300	12.0791	0.4158	12.4949	3.0896
$\mathrm{Co}\left({ }^{12} \mathrm{C}^{15} \mathrm{~N}\right)_{6}{ }^{3-}$	300	12.1968	0.4158	12.6127	3.1264
$\mathrm{CO}\left({ }^{12} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	200	9.8399	0.2772	10.1171	2.6831
	240	10.7228	0.3327	11.0554	2.8447
	280	11.6915	0.3881	12.0796	3.0311
	320	12.7246	0.4436	13.1681	3.2361
	360	13.8061	0.4990	14.3051	3.4551
	400	14.9247	0.5545	15.4791	3.6849
$\mathrm{Co}\left({ }^{12} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	300	4.2865	0.1021	4.3886	1.2129
$\mathrm{Co}\left({ }^{13} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	300	4.1986	0.1021	4.3006	1.1882
$\mathrm{Co}\left({ }^{12} \mathrm{C}^{15} \mathrm{~N}\right)_{6}{ }_{6}{ }^{3-}$	300	4.2168	0.1021	4.3189	1.1936
$\mathrm{Co}\left({ }^{12} \mathrm{C}^{14} \mathrm{~N}\right)_{6}{ }^{3-}$	200	4.2949	0.0681	4.3630	1.2117
	400	4.2827	0.1361	4.4419	1.2152

${ }^{a} \Delta r$ refers to the $\mathrm{Co}-\mathrm{C}$ bond and ΔR to the $\mathrm{C}-\mathrm{N}$ bond; all are in $10^{-3} \AA$.
1.736 and $a_{\mathrm{CN}}=2.406 \AA^{-1}$, respectively. K_{CoC} and K_{CN} are assigned the values 2.084 and $17.425 \mathrm{mdyn} \AA^{-1}$, estimated from $f_{\mathrm{C} O C}$ and f_{CN} given by Jones. ${ }^{12}$ The nonbonded interaction constant $F(\mathrm{C} \cdots \mathrm{C})=0.138 \mathrm{mdyn} / \AA$ is obtained from $\mathcal{F}_{22}=K_{\mathrm{MC}}+4 F$ using the experimental value of the symmetry force constant \mathcal{F}_{22}. The results are presented in Table V. We find the temperature dependence of (ΔR_{CN}) to be very similar to that of (ΔR_{CO}): $\left(\Delta R_{\mathrm{CN}}\right\rangle^{400 \mathrm{~K}}-\left\langle\Delta R_{\mathrm{CN}}\right)^{200 \mathrm{~K}}=-1.2 \times 10^{-5} \AA$ due to vibration plus $6.8 \times 10^{-5} \AA$ due to rotation (120% rotation)
$\left(\Delta r_{C O C}\right)^{400}-\left\langle\Delta r_{\mathrm{COC}}\right)^{200}=5.08 \times 10^{-3} \AA$ due to vibration plus $2.77 \times 10^{-4} \AA$ due to rotation (5% rotation)
The mass dependence of the $\mathrm{Co}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ bonds at 300 K are given by:

$$
\begin{aligned}
& (\Delta r\rangle_{59} \mathrm{Co}{ }^{12} \mathrm{C}-\langle\Delta r\rangle_{59}{ }^{\mathrm{Co}}{ }^{13}{ }^{3} \mathrm{C}= \\
& 1.22 \times 10^{-4} \AA \text { for }{ }^{14} \mathrm{~N} \text { isotopomers } \\
& \left.(\Delta r\rangle^{59} \mathrm{Co}_{0}{ }^{-12} \mathrm{C}^{14} \mathrm{~N}\right)-\langle\Delta r\rangle_{{ }^{59} \mathrm{CO}^{12} \mathrm{C}\left({ }^{15} \mathrm{~N}\right)}=4.2 \times 10^{-6} \AA \\
& (\Delta R)_{2^{2}{ }^{2}-{ }^{14} \mathrm{~N}}-(\Delta R\rangle_{3_{3} \mathrm{C}-14 \mathrm{~N}}=8.8 \times 10^{-5} \AA
\end{aligned}
$$

It is worthwhile noting in Figure 1 that the temperature dependence of the M-C bond displacements is nearly two orders of magnitude larger than that of the CO or CN bond displacements, although the ${ }^{13} \mathrm{C}$-induced changes are only 1.4 times as large for the $\mathrm{M}-\mathrm{C}$ bonds as for the CO or CN bonds. Since the electron distribution in transition metal complexes is known to be sensitive to the metal-ligand distance, these results indicate that the optical absorption bands of these complexes should exhibit a measurable temperature dependence. The change in the position of the ${ }^{1} \mathrm{~A}_{1 \mathrm{~g}} \rightarrow{ }^{1} \mathrm{~T}_{1 \mathrm{~g}}$ absorption maximum in the $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$ complex has been noted in aqueous solution, a change of about 4 nm in the range $0-90^{\circ} \mathrm{C} .{ }^{14}$

The observed temperature and mass dependence of ${ }^{51} \mathrm{~V}$ and ${ }^{59} \mathrm{Co}$ NMR chemical shifts in $\mathrm{V}(\mathrm{CO})_{6}{ }^{-}$and $\mathrm{Co}(\mathrm{CN})_{6}{ }^{3-}$ are interpreted in the following paper in terms of the calculated temperature and mass dependence of ($\left.\Delta r_{\mathrm{VC}}\right),\left(\Delta R_{\mathrm{CO}}\right),\left\langle\Delta r_{\mathrm{COC}}\right\rangle$, and ($\left.\Delta R_{\mathrm{CN}}\right\rangle$.

Acknowledgment. This research has been supported in part by the National Science Foundation (CHE85-05725).

[^3]
[^0]: (1) Benedek, G. B.; Englman, R.; Armstrong, J. A. J. Chem. Phys. 1963, 39, 3349-3363. Jameson, C. J.; Rehder, D.; Hoch, M. J. Am. Chem. Soc., following paper in this issue.
 (2) Hoch, M.; Rehder, D. Inorg. Chim. Acta 1986, Il1, L13. Näumann, F.; Rehder, D.; Pank, V. J. Organomet. Chem. 1982, 240, 363. McFarlane, H. C. E.; McFarlane, W.; Rycroft, D. S. J. Chem. Soc., Dalton Trans. 1976, 1616.
 (3) Jones, L. H.; McDowell, R. S.; Goldblatt, M. Inorg. Chem. 1969, 8, 2349-2363.
 (4) Abel, E. W.; McLean, R. A. N.; Tyfield, S. P.; Braterman, P. S.; Walker, A. P.; Hendra, P. J. J. Mol. Spectrosc. 1969, 30, 29-50.

[^1]: (5) Jones, L. H. J. Mol. Spectrosc. 1962, 8, 105-120.
 (6) Krohn, B. J.; Overend, J. J. Phys. Chem. 1984, 88, 564-574.
 (7) Jameson, C. J.; Jameson, A. K. J. Chem. Phys. 1986, 85, 5484-5492.
 (8) Herschbach, D. R.; Laurie, V. W. J. Chem. Phys. 1961, 35, 458-463.
 (9) Wilson, R. D.; Bau, R. J. Am. Chem. Soc. 1974, 96, 7601-7602.
 (10) Bartell, L. S. J. Chem. Phys. 1963, 38, 1827-1833; 1979, 70, 4581-4584.
 (11) Jameson, C. J.; Osten, H. J. J. Chem. Phys. 1984, 81, 4915-4921, 4288-4292, 4293-4299, 4300-4305.

[^2]: (12) Jones, L. H.; Memering, M. N.; Swanson, B. I. J. Chem. Phys. 1971, 54, 4666-4671.

[^3]: (13) Curry, N. A.; Runciman, W. A. Acta Crystallogr. 1959, 12, 674.
 (14) Juranic, N. J. Chem. Phys. 1981, 74, 3690-3693.

